

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Voltage Reference Design Considerations for a High Performance System

Shailesh Khole USPAS 2017 (LLRF Class) 20th January 2017

Introduction

- Selection of Voltage Reference
- Improvement in the performance!
- Component Selection & Layout
- How to test?

Voltage Reference Selection

- The ADC noise budget is dominated by Voltage Reference noise as referred to ADC input
- voltage reference stability and noise define measurement limits in instrumentation systems.
- The Choice of Reference Voltage is decide by the ADC
- On Chip Reference?
 - On same die as that of digital and Analog switching sections
 - ADC chip has speed dependent power loss

🏞 Fermilah

1/20/2017

Susceptible to noise and temperature drift

ADC Specifications

AC SPECIFICATIONS, VREF = 1.0 V

AVDD = 1.8 V, DRVDD = 1.8 V, 2.0 V p-p full-scale differential input, 1.0 V reference, An = -1.0 dBFS, unless otherwise noted.

14000 4.					
Parameter ¹	Temperature	Min	Тур	Max	Unit
SIGNAL-TO-NOISE RATIO (SNR)					
f _N = 9.7 MHz	25°C		78		dBFS
f _N =16 MHz	25°C		77.9		dBFS
$f_N = 64 \text{ MHz}$	25°C		76.8		dBFS
f _{IN} = 128 MHz	25°C		74.3		dBFS
f _N = 201 MHz	25°C		72.1		dBFS
f _N = 301 MHz	25°C		69.3		dBFS

AD9656 has 2dB additional SNR at 16MHz

AC SPECIFICATIONS, VREF = 1.4 V

AVDD = 1.8 V, DRVDD = 1.8 V, 2.8 V p-p full-scale differential input, 1.4 V reference, AIN = -1.0 dBFS, unless otherwise noted.

int i				
Та	ы	a	2	
1 0	м	ĸ	J	

Table 4

Parameter ¹	Temperature	Min	Тур	Max	Unit
SIGNAL-TO-NOISE RATIO (SNR)					
f _{IN} = 9.7 MHz	25°C		80.1		dBFS
$f_N = 16 \text{ MHz}$	25°C		79.9		dBFS
fin = 64 MHz	25°C	75.7	78.1		dBFS
f _{IN} = 128 MHz	25°C		75		dBFS
f _N = 201 MHz	25°C		72.7		dBFS
f _{IN} = 301 MHz	25°C		69.7		dBFS

Voltage Reference Specifications

High accuracy Low noise Current drive capacity Good load regulation Low thermal drift Low Long term drift Low environment sensitivity Low dropout voltage 1.4V is a non standard value

LTC 6655-2.5

FEATURES

- Low Noise: 0.25ppm_{P-P} (0.1Hz to 10Hz) 625nV_{P-P} for the LTC6655-2.5
- Low Drift: 2ppm/°C Max
- High Accuracy: ±0.025% Max
- No Humidity Sensitivity (LS8 Package)
- Thermal Hysteresis (LS8): 30ppm (-40°C to 85°C)
- Long-Term Drift (LS8): 20ppm/√kHr
- 100% Tested at -40°C, 25°C and 125°C
- Load Regulation: <10ppm/mA</p>
- Sinks and Sources Current: ±5mA
- Low Dropout: 500mV
- Maximum Supply Voltage: 13.2V
- Low Power Shutdown: <20µA Max</p>
- Available Output Voltages: 1.25V, 2.048V, 2.5V, 3V, 3.3V, 4.096V, 5V
- Available in an 8-Lead MSOP and High Stability Hermetic 5mm × 5mm LS8 Packages

1/20/2017

SE Fermilab

Noise performance

6 Shailesh Khole | Voltage Reference Design Considerations

Can we Improve It?

Can we Improve It?

What about ADC Reference Resistor

- ADC internal Impedance is deciding the voltage
- ADC internal Impedance is temperature dependent
- It can very as much as 10% with temperature and varies from device to device
- Multiple ADC will disturb the Reference voltage
- Voltage reference output impedance is high

OBCCENT	i Mil		-		PP ~
INTERNAL VOLTAGE REFERENCE					
Output Voltage	25°C	1.37	1.4	1.41	V
Load Regulation at 1.0 mA	25°C		4		mV
Input Resistance	25°C		7.5		kΩ
INPUT-REFERRED NOISE					
$V_{REF} = 1.4 V$	25°C		2.1		LSB rms
ANALOG INPUTS			î.		

🛠 Fermilab

Low Noise Buffered output

1/20/2017

‡Fermilab

Low Noise Buffered output

1/20/2017

‡Fermilab

Layout and component selection

- Never use ceramic capacitors. On even on power supply lines of ADC and Reference. They generate micro-phonics. Use NP0 capacitors
- Use an LDO to power the reference chip
- Keep a continuous ground plane below the chip for noise isolation and thermal heat removal
- Place reference section close to ADC
- Shield the Reference output lines

Testing of Reference

- The Key specification of testing is
 - Reference 1/f noise
 - Reference white noise
 - Reference RMS noise
 - Reference drift with time
 - Reference transient load response
- 1/f noise measurement needs special kind of testing unit
 - The measuring instrument 1/f performance will dominate the results.

Measurement unit

Figure 2. Conceptual 0.1Hz to 10Hz Noise Testing Scheme Includes Low Noise Pre-Amplifier, Filter and Peak to Peak Noise Detector. Pre-Amplifier's 160nV Noise Floor, Enabling Accurate Measurement, Requires Special Design and Layout Techniques

1/20/2017

‡ Fermilab

Measurement unit

Figure 3. Detailed Noise Test Circuitry. Thermally Lagged Q1-Q2 Low Noise J-FET Pair Is DC Stabilized by A1-Q3; A2 Delivers A = 10,000 Pre-Amplifier Output. A3-A4 form 0.1Hz to 10Hz ,A = 100, Bandpass Filter; Total Gain Referred to Pre-Amplifier Input Is 10⁶. Peak to Peak Noise Detector, Reset by Monitoring Oscilloscope Sweep Gate, Supplies DVM Output

1/20/2017

‡ Fermilab

References

- Linear Technology
 - LT 6655 Data sheet
 - LT 1128 Data sheet
 - Application Note AN124
- Analog devices
 - AD9656 Data sheet
 - Application Note AN835 for ADC specification testing and performance evaluation

Thanks

17 Presenter | Presentation Title